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Outline – Lecture 3
• Trends in Computing
• Future HEP experiments 

– Tevatron experiments
– LHC
– Other

• Technology
– Commodity computing/New Types of Farms
– GRID
– Disk Farms
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New York Times, 
Sunday, March 25, 2001
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Trends in Computing

• It is expected that all computing resources will 
continue to become cheaper and faster, though 
not necessarily faster than the computing 
problems we are trying to solve.

• There are some worries about a mismatch of 
CPU speed and input/output performance.  This 
can be caused by problems with:
– Memory speed/bandwidth.
– Disk I/O.
– Bus speed.
– LAN performance.
– WAN performance.
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Computing Trends

• Nevertheless, it is fully expected that the 
substantial and exponential increases in 
performance will continue for the foreseeable 
future.
– CPU
– Disk
– Memory
– LAN/WAN
– Mass Storage
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Moore’s Law
http://sunsite.informatik.rwth-aachen.de/jargon300/Moore_sLaw.html

• density of silicon integrated circuits has closely 
followed the curve (bits per square inch)  = 
2^((t - 1962)) where t is time in years; that 
is, the amount of information storable on a 
given amount of silicon has roughly doubled 
every year since the technology was invented.  
See also Parkinson's Law of Data.
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Parkinson’s Law of Data
http://sunsite.informatik.rwth-aachen.de/jargon300/Parkinson_sLawofData.html

• "Data expands to fill the space available for 
storage"; buying more memory encourages the 
use of more memory-intensive techniques.  It 
has been observed over the last 10 years that 
the memory usage of evolving systems tends to 
double roughly once every 18 months.  
Fortunately, memory density available for 
constant dollars also tends to double about once 
every 12 months (see Moore's Law); 
unfortunately, the laws of physics guarantee 
that the latter cannot continue indefinitely.
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General Trends
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Hardware Cost Estimates
Paul Avery

1.4 years

1.2 years

1.1 years

2.1 years
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CPU Speed and price performance

Cheap CPU Costing Trends
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Disk Size, Performance and Cost
http://eame.ethics.ubc.ca/users/rikblok/ComputingTrends/

Doubling time = 11.0 +- 0.1 months
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Memory size and cost
http://eame.ethics.ubc.ca/users/rikblok/ComputingTrends/

Doubling time = 12.0 +- 0.3 months
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Worries/Warnings

• Matching of Processing speed, compiler 
performance, cache size and speed, memory 
size and speed, disk size and speed, and 
network size and speed is not guaranteed!

• BaBar luminosity is expected to grow at a rate 
which exceeds Moore’s law 
(www.ihep.ac.cn/~chep01/presentation/4-021.pdf)

• This may be true of other experiments or in 
comparing future experiments (LHC) with 
current experiments (RHIC, Run 2, BaBar)

http://www.ihep.ac.cn/~chep01/presentation/4-021.pdf
http://www.ihep.ac.cn/~chep01/presentation/4-021.pdf
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Data Volume per experiment per year (in 
units of 109 bytes)
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Future HEP Experiments
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Run 2b at Fermilab
• Run 2b will start in 2004 and will increase the integrated 

luminosity to CDF and D0 by a factor of approximately 8 
(or more if possible).  

• It is likely that the computing required will increase by 
the same factor, in order to pursue the physics topics of 
interest:
– B physics
– Electroweak
– Top
– Higgs
– Supersymmetry
– QCD
– Etc.
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Run 2b Computing

• Current estimates for Run 2b computing:
– 8x CPU, disk, tape storage.
– Expected cost is same as Run 2a because of 

increased price/performance of CPU, disk, tape.
– Plans for R&D testing, upgrades/acquisitions 

will start next year.
• Data-taking rate:

– May be as large as 100 Mbyte/s (or greater).
– About 1 Petabyte/year to storage.



September, 2001 Stephen Wolbers, Heidi Schellman 
CERN School of Computing 2001

18

Run 2b Computing

• To satisfy Run 2b Computing Needs:
– More CPU (mostly PCs)
– More Data Storage (higher density tapes)
– Faster Networks (10 Gbit Ethernet)
– More Disk
– More Distributed Computing (GRID)
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LHC Computing

• LHC (Large Hadron Collider) will begin taking 
data in 2006-2007 at CERN.

• Data rates per experiment of >100 
Mbytes/sec.

• >1 Pbyte/year of storage for raw data per 
experiment.

• World-wide collaborations and analysis.
– Desirable to share computing and analysis 

throughout the world.
– GRID computing may provide the tools.
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level 1 - special hardware

40 MHz   (40 TB/sec)level 2 - embedded processors
level 3 - PCs

75 KHz (75 GB/sec)5 KHz (5 GB/sec)100 Hz(100 MB/sec)data recording &
offline analysis
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CMS Computing Challenges

– Experiment in preparation at CERN/Switzerland 
– Strong US participation: ~20%
– Startup: by 2005/2006, will run for 15+ years

1800  Physicists
150  Institutes
32  Countries

Major challenges associated with:Major challenges associated with:
Communication and collaboration at a distanceCommunication and collaboration at a distance

Distributed computing resources Distributed computing resources 
Remote software development and physics analysisRemote software development and physics analysis

R&D: New Forms of Distributed SystemsR&D: New Forms of Distributed Systems
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The CMS Collaboration
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LHC Data Complexity

• “Events” resulting from beam-beam collisions:
– Signal event is obscured by 20 overlapping 

uninteresting collisions in same crossing
– CPU time does not scale from previous 

generations

2000
2007
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Software Development Phases

20022001 20042003 20052000

3: Fully Functional System
• Complete Functionality
• Integration across projects
• Reality Check: ~5% Data Challenge

4: Pre-Production System
• Reality Check: ~20% Data Challenge

1: Proof of Concept: End of 1998
• Basic functionality
• Very loosely integrated

5: Production System
• Online / Trigger Systems: 75 100Hz
• Offline Systems: few 1015 Bytes / year

• 109 events / yr to look for a handful 
of (correct!) Higgs

• Highly distributed collaboration and 
resources

• Long lifetime

2: Functional Prototype
• More complex functionality
• Integrated into projects
• Reality Check: ~1% Data Challenge

2015
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Other Future Experiments

• BaBar, RHIC, JLAB, etc. all have upgrade 
plans.

• Also new experiments such as BTeV and CKM at 
Fermilab have large data-taking rates.

• All tend to reach 100 MB/s raw data recording 
rates during the 2005-2010 timeframe.

• Computing Systems will have to be built to 
handle the load.
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Technology
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CPU/PCs

• Commodity Computing has a great deal to offer.
– Cheap CPU.
– Fast network I/O.
– Fast Disk I/O.
– Cheap Disk.

• Can PCs be the basis of essentially all HEP 
computing in the future?
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Analysis – a very general model

The 
Network

Tapes

Disks

PCs, SMPs
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data cache

mass
storage

application
servers

WAN

Generic computing farm Les Robertson
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Computing Fabric Management
Les Robertson

Key Issues –

• scale
• efficiency & performance
• resilience – fault tolerance
• cost – acquisition, maintenance, operation
• usability
• security
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Working assumptions for Computing Fabric at 
CERN

• single physical cluster – Tier 0, Tier 1, 4 experiments
– partitioned by function, (maybe) by user

• an architecture that accommodates mass market components
and supports cost-effective and seamless capacity evolution

• new level of operational automation
novel style of fault tolerance – self-healing fabrics

Les Robertson

data cache

mass
storage

application
servers

WAN connection
to the Grid

• plan for active mass storage (tape)
.. but hope to use it only
as an archive

• one platform –
Linux, Intel

ESSENTIAL to remain flexible
on all fronts

Where are the 
industrial products?
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GRID Computing

• GRID Computing has great potential.
– Makes use of distributed resources.
– Allows contributions from many 

institutions/countries.
– Provides framework for physics analysis for the 

future.
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CMS/ATLAS and GRID Computing
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Example: CMS Data Grid

CERN/Outside Resource Ratio ~1:2
Tier0/(Σ Tier1)/(Σ Tier2)      ~1:1:1

Experiment

Tier2 Center

CERN Computer 
Center > 20 TIPS

USA CenterFrance Center Italy CenterUK Center

InstituteInstituteInstituteInstitute 
~0.25TIPS

~100 MBytes/sec

2.5 Gbits/sec

100 - 1000 
Mbits/sec

Physics data cache

~PBytes/sec

2.5 Gbits/sec

Tier2 CenterTier2 CenterTier2 Center

~622 Mbits/sec

Tier 0 +1

Tier 1

Tier 4

Tier2 Center 

Online System

Bunch crossing per 25 nsecs.
100 triggers per second
Event is ~1 MByte in size

Tier 2
Tier 3

Physicists work on analysis “channels”.

Each institute has ~10 physicists 
working on one or more channelsWorkstations,

other portals
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physics group

LHC Computing Model
2001 - evolving

regional group

le
s.

ro
be

rt
so

n@
ce

rn
.c

h

CERN
Tier2

Lab a

Uni a

Lab c

Uni n

Lab m

Lab b

Uni bUni y

Uni x

Tier3
physics

department

α

β

γ
Desktop

Germany

Tier 1

USA
UK

France

Italy

……….

CERN Tier 1

……….

The LHC 
Computing 
Centre

The opportunity of
Grid technology

Les Robertson



September, 2001 Stephen Wolbers, Heidi Schellman 
CERN School of Computing 2001

36

Fermilab Networking and connection to 
Internet
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Are Grids a solution?
Computational Grids
• Change of orientation of Meta-computing activity

– From inter-connected super-computers
… ..  towards a more general concept of a 

computational power Grid (The Grid – Ian Foster, 
Carl Kesselman**)

• Has found resonance with the press, funding 
agencies

But what is a Grid?
“Dependable, consistent, pervasive access to 

resources**”
So, in some way Grid technology makes it easy to use 

diverse, geographically distributed, locally managed 
and controlled computing facilities – as if they 
formed a coherent local cluster

Les Robertson, CERN

** Ian Foster and Carl Kesselman, editors, “The Grid: Blueprint for a New Computing Infrastructure,” 
Morgan Kaufmann, 1999
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What does the Grid do for you?
• You submit your work 
• And the Grid

– Finds convenient places for it to be run
– Organises efficient access to your data 

• Caching, migration, replication
– Deals with authentication to the different sites that 

you will be using
– Interfaces to local site resource allocation 

mechanisms, policies
– Runs your jobs
– Monitors progress
– Recovers from problems
– Tells you when your work is complete

• If there is scope for parallelism, it can also decompose 
your work into convenient execution units based on the 
available resources, data distribution

Les Robertson



September, 2001 Stephen Wolbers, Heidi Schellman 
CERN School of Computing 2001

39

PPDG GRID R&D
Richard Mount, SLAC

PPDG LHC Computing ReviewNovember 15,  2000

PPDG Multi-site Cached File Access System

UniversityUniversity
CPU, Disk, CPU, Disk, 

UsersUsers

PRIMARY SITEPRIMARY SITE
Data Acquisition,Data Acquisition,
Tape, CPU, Disk, Tape, CPU, Disk, 

RobotRobot

Satellite SiteSatellite Site
Tape, CPU, Tape, CPU, 
Disk, RobotDisk, Robot

Satellite SiteSatellite Site
Tape, CPU, Tape, CPU, 
Disk, RobotDisk, Robot

UniversityUniversity
CPU, Disk, CPU, Disk, 

UsersUsers

UniversityUniversity
CPU, Disk, CPU, Disk, 

UsersUsers

Satellite SiteSatellite Site
Tape, CPU, Tape, CPU, 
Disk, RobotDisk, Robot
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GriPhyN Overview
(www.griphyn.org)

• 5-year, $12M NSF ITR proposal to realize the concept 
of virtual data, via:
1) CS research on

• Virtual data technologies (info models, management of 
virtual data software, etc.)

• Request planning and scheduling (including policy 
representation and enforcement)

• Task execution (including agent computing, fault 
management, etc.)

2) Development of Virtual Data Toolkit (VDT)
3) Applications: ATLAS, CMS, LIGO, SDSS

• PIs=Avery (Florida), Foster (Chicago)
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GriPhyN: PetaScale Virtual-Data Grids

Virtual Data Tools Request Planning &
Scheduling Tools

Request Execution &
Management Tools

Transforms

Distributed resources
(code, storage, CPUs,
networks)

Resource 
Management 

Services
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Services

Security and 
Policy 
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Security and
Policy 

Services

Other Grid 
Services

Other Grid
Services

Interactive User Tools

Production TeamIndividual Investigator Workgroups

Raw data
source

~1 Petaflop
~100 Petabytes
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Globus Applications and Deployments

Carl Kesselman
Center for Grid Technologies

USC/Information Sciences Institute

• Application projects include
– GriPhyN, PPDG, NEES, EU DataGrid, ESG, 

Fusion Collaboratory, etc., etc.
• Infrastructure deployments include

– DISCOM, NASA IPG, NSF TeraGrid, DOE 
Science Grid, EU DataGrid, etc., etc.

– UK Grid Center, U.S. GRIDS Center
• Technology projects include

– Data Grids, Access Grid, Portals, CORBA, 
MPICH-G2, Condor-G, GrADS, etc., etc.
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Example Application Projects

Carl Kesselman
Center for Grid Technologies

USC/Information Sciences Institute

• AstroGrid: astronomy, etc. (UK)
• Earth Systems Grid: environment (US DOE)
• EU DataGrid: physics, environment, etc. (EU)
• EuroGrid: various (EU)
• Fusion Collaboratory (US DOE)
• GridLab: astrophysics, etc. (EU)
• Grid Physics Network (US NSF)
• MetaNEOS: numerical optimization (US NSF)
• NEESgrid: civil engineering (US NSF)
• Particle Physics Data Grid (US DOE)
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HEP Related Data Grid Projects

Paul Avery

• Funded projects
– GriPhyN USA NSF, $11.9M + $1.6M
– PPDG I USA DOE, $2M
– PPDG II USA DOE, $9.5M
– EU DataGrid EU $9.3M

• Proposed projects
– iVDGL USA NSF, $15M + $1.8M + UK
– DTF USA NSF, $45M + $4M/yr
– DataTag EU EC, $2M?
– GridPP UK PPARC, > $15M

• Other national projects
– UK e-Science (> $100M for 2001-2004)
– Italy, France, (Japan?)
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GRID Computing

• GRID computing is a very hot topic at the 
moment.

• HENP is involved in many GRID R&D projects, 
with the next steps aimed at providing real 
tools and software to experiments.

• The problem is a large one and it is not yet 
clear that the concepts will turned into 
effective computing.
– CMS@HOME?
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The full costs?

• Space
• Power, cooling
• Software

• LAN
• Replacement/Expansion 30% per year

• Mass storage

• People

Matthias Kasemann
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Storing Petabytes of Data in mass storage
• Storing (safely) petabytes of data is not easy 

or cheap.
– Need large robots (for storage and tape 

mounting).
– Need many tapedrives to get the necessary I/O 

rates.
• Tapedrives and tapes are an important part 

of the solution, and has caused some 
difficulty for Run 2.

– Need bandwidth to the final application 
(network or SCSI).

– Need system to keep track of what is going on 
and schedule and prioritize requests.
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Tapedrives and tapes
• Tapedrives are not always reliable, especially when one is 

pushing for higher performance at lower cost.
• Run 2 choice was Exabyte Mammoth 2.

– 60 Gbytes/tape.
– 12 Mbyte/sec read/write speed.
– About $1 per Gbyte for tape. (A lot of money.)
– $5000 per tapedrive.

• Mammoth 2 was not capable (various problems).
• AIT2 from SONY is the backup solution and is being used 

by CDF.
• STK 9940 was chosen by D0 for data, LTO for Monte 

Carlo.
• Given the Run 2 timescale, upgrades to newer technology 

will occur.
• Finally, Fermilab is starting to look at PC diskfarms to 

replace tape completely.
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Robots and tapes
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Disk Farms (Tape Killer)

• Tapes are a pain:
– They are slow
– They wear out and break
– They improve ever so slowly

• But they have advantages:
– Large volume of data
– Low price
– Archival medium
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Price
Performance Tape

Disk

Time
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An Idea: Disk Farms

• Can we eliminate tape completely for data storage?
• What makes this possible?

– Disk drives are fast, cheap, and large.
– Disk drives are getting faster, cheaper and larger.
– Access to the data can be made via the standard 

network-based techniques
• NFS,AFS,tcp/ip,fibrechannel

– Cataloging of the data can be similar to tape cataloging
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Disk Farms

• Two Ideas:
– Utilize disk storage on cheap PCs
– Build storage devices to replace tape storage

• Why Bother?
– The price performance of disk is increasing 

very rapidly.
– Tape performance is not improving as quickly.
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I.-Utilize cheap disks on PCs

• All PCs come with substantial EIDE disk storage
– Cheap
– Fast
– On CPU farms it is mostly unused

• Given the speed of modern ethernet switches, 
this disk storage can be quite useful
– Good place to store intermediate results
– Could be used to build a reasonable 

performance SAN
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II.-Build a true disk-based mass storage 
system

• Components of all-disk mass storage:
– Large number of disks.
– Connected to many PCs.
– Software catalog to keep track of files.

• Issues
– Power, cooling.
– Spin-down disks when not used?
– Catalog and access
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Summary of Lecture 3

• Future HEP experiments require massive 
amounts of computing, including data collection 
and storage, data access, database access, 
computing cycles, etc.  

• Tools for providing those cycles exist, and an 
architecture for each experiment needs to be 
invented.

• The GRID will be a part of this architecture 
and is an exciting prospect to help HEP.
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